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 This quasi-experimental study with non-equivalent control group post-test only 
design was conducted to investigate the effects of using graphing calculators in 
mathematics teaching and learning on Form Four Malaysian secondary school 
students’ performance and their meta-cognitive awareness level. Graphing 
calculator strategy refers to the use of TI-83 Plus graphing calculator in teaching 
and learning of Straight Lines topic. The experimental group underwent learning 
using graphing calculator while the control group underwent learning using 
conventional instruction. Three instruments were used in this study namely, 
Straight Lines Achievement Test, Paas Mental Effort Rating Scale and Meta-
cognitive Awareness Survey. The data were analysed using independent t-test and 
planned comparison test.  The findings indicated that the graphing calculators’ 
instruction enhanced students’ performance and induced higher levels of meta-
cognitive awareness among students. Less mental effort were invested during the 
learning and test phases and hence increased 3-dimensional instructional 
efficiency index in learning of Straight Lines topic. Hence it can be implied that 
integrating the use of graphing calculators in teaching and learning of 
mathematics was more efficient than the conventional instruction strategy. Even 
though some students experience difficulties in using graphing calculators initially 
during learning, they responded overwhelmingly that graphing calculators 
improves their understanding of the Straight Lines topic. Hence, the usage of the 
graphing calculator lends as an effective strategy in teaching and learning of 
mathematics. 
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INTRODUCTION 

The increased use of technology and the changing demands of the workplace 
have changed the nature of mathematics instructions since the last few years.  
There is a need to develop students that can survive in today’s society of 
technology. This requires highly skilled workers with the ability to apply their 
mathematical knowledge which includes and goes beyond the simple skills of 
solving mundane problems. Indeed, the National Council of Teachers of 
Mathematics [NCTM] (1989) reflects a shift in the changing importance of 
thinking and problem solving in school. In addition, the NCTM (2000) 
emphasized understanding of mathematics and technology used in mathematical 
teaching and learning. In fact, students who learn mathematics with 
understanding will retain what they learn and transfer it to novel situations. 
Thus, parallel with the growing influence of technological advancement, there 
is a need for a curriculum that can develop the mathematical power of students. 
This involves a shift from a curriculum dominated by memorization of isolated 
facts and procedures to one that emphasises on conceptual understanding, 
mathematical problem solving and the integration of technology during 
teaching. 

In reality, the hand-held technology, specifically the graphing calculator 
represents the direction of the pedagogical future (Kissane, 2000). The 
availability and accessibility to students at all time and the portability of 
graphing calculators with the capabilities to graph functions and relations, 
manipulate symbolic expressions, and perform high precision numerical 
integration and root findings of functions enables a more realistic mathematics 
lesson to take place. Further, because of many advantages, the graphing 
calculators has gained widespread acceptance as a powerful tool for 
mathematics classroom (Dick, 1992; Wilson & Kraptl, 1994). Therefore, 
mathematics educators today has the responsibility to help students better 
understand more complex mathematics topics through the use of modern 
technological tools namely, the graphing calculators.  

The growing influence of graphing technology advancement has also affected 
Malaysian mathematics education. It is essential for Malaysian mathematics 
teachers to be prepared in dealing with educational changes, challenges and 
demands.  Besides being experts in mathematics content and pedagogical skills, 
they should also be equipped with the needs of an ever-changing technological 
society and always be updated with the innovations and inventions of the latest 
technology. Consistently, it is also stated in the Malaysian Mathematics 
Curriculum Specifications that the use of technology such as calculators, 
computers, educational software, websites and relevant learning packages can 
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help to upgrade the pedagogical approach and hence promote students’ 
understanding of mathematical concepts in depth, meaningfully and precisely 
(Curriculum Development Centre, 2005).   

Recently, there has been a steady increase in the use of hand-held technologies, 
in particular the graphing calculators. Generally, this tool has gained 
widespread acceptance as a powerful tool for learning mathematics. However, 
the maximum potential for this technology has not been explored (Kastberg & 
Leatheam, 2005). Technology explosion has inspired various methodologies for 
the purpose of effective teaching and learning in general and specifically in 
mathematics. In Malaysia, teachers are encouraged to use the latest technology 
to help students understand mathematical concepts in depth and to enable them 
to explore mathematical ideas (Curriculum Development Centre, 2005). This 
emphasis is congruent with the NCTM’s Technological Principle which states 
that, “Technology is essential in teaching and learning mathematics, it 
influences the mathematics that is taught and enhances students’ learning” 
(NCTM, 2000, p. 24).   

There are many kinds of technology that are considered relevant to school 
mathematics which ranged from very powerful computer software such as 
Mathematica, Maple, and MathLab to much powerless technologies. For 
example, based on the Mathematics Curriculum Specification of Integrated 
Curriculum for Secondary School, the use of technology such as calculators, 
computers, educational software, websites in the Internet and relevant learning 
packages was highlighted as tools that can help to upgrade the pedagogical 
approach and thus promote the understanding of mathematical concepts in 
teaching and learning (Kementerian Pendidikan Malaysia, 2004). In addition, 
the application of these teaching resources will also help students absorb ideas, 
be creative, feel confident and be able to work independently or in group.  

Related Learning Theories 

The positive effects of the integration and the use of graphing calculators in the 
teaching and learning process of mathematics can be understood by explaining 
and illustrating the theories of cognitive load, distributed cognition and 
constructivism in relation to this tool. All theories provide a basis for the 
theoretical and conceptual framework of the study. 

Cognitive Load Theory 

Cognitive load theory (CLT) (Sweller, 2004; 1988, Paas, Renkl & Sweller, 
2003a) focuses on the role of working memory in the development of 
instructional methods. Specifically, CLT emphasise structures that involve 
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interactions between long term memory (LTM) and short term memory (STM) 
or working memory which play a significant role in learning. One major 
assumption of the theory is that a learner’s working memory has only limitation 
in both capacity and duration. Under some conditions, these limitations will 
somehow impede learning.  

According to CLT, learning will fail if the total cognitive load exceeds the total 
mental resources in the working memory. With a given intrinsic cognitive load, 
a well-designed instruction minimises extraneous cognitive load and optimises 
germane cognitive load. This type of instructional design will promote learning 
efficiency, provided that the total cognitive load does not exceed the total 
mental resources during the learning process (Tarmizi & Sweller, 1988).   

Since little consideration is given to the concept of CLT, that is without any 
considerations or knowledge of the structure of information or cognitive 
architecture, many conventional instructional designs are less than effective 
(Pass et al., 2003a). Therefore, many of these methods involve extraneous 
activities that are unrelated to the acquisition of schemas and rule automation.  
In addition, Sweller et al. (1998) argued that in many cases it is the instructional 
design which causes an overload, since humans allocate most of their cognitive 
resources to working memory activities when learning.  These extraneous 
activities will only contribute to the unnecessary extraneous cognitive load in 
which can be detrimental to the learning process. Thus to achieve better 
learning and transfer performance, the main idea of the theory is to reduce such 
form of load in order to make more working memory capacity for the actual 
learning environment.  In other words, the main premise of CLT is that in order 
to be effective, instructional design should take into account the limitations of 
the working memory. Hence, it was hypothesised that integrating the use of 
graphic calculators in teaching and learning of mathematics can reduce 
cognitive load and lead to better performance in learning and improve meta-
cognitive awareness levels while solving mathematical problems.  

Distributed Cognition Theory 

The distributed cognition theory claims that cognition is better understood as a 
distributed phenomenon: one that goes beyond the boundaries of a person but to 
include environment, artifacts, social interactions, and culture (Hutchin & 
Hollan, 1999). Briefly, cognitive process in the distributed cognition theory is 
viewed as a system which comprise of the individual, the whole learning 
context and multiple relationships between them (Dofler, 1993). It means the 
system consist of the subject and the cognitive tools. The system explains how 
the knowledge within the environment, culture and social interaction are 
represented; how the knowledge between different individuals and artifacts are 
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transmitted; and how the external structures are transmitted when acted on by 
individuals and artifacts (Flor & Hutchin, 1991). Further, the system strives to 
educate one on how to use tools in an appropriate organised manner to achieve 
learning goals.   

The distributed phenomenon perspective is adopted to explain cognitive effects 
when using technology (Jones, 2000; Salomon, Perkins & Globerson, 1992). It 
is the effect obtained during intellectual partnership with the technology, and 
the transferable cognitive residue that this partnership leaves behind.  These are 
in the form of better mastery of skills and strategies.  Some researchers view 
that the effect of technology is that “intelligent” technology “offloads” part of 
the cognitive process as a result of distributions of cognition.  Further, this will 
allow users to focus on cognitive resources elsewhere (Salomon et al., 1992).  
They also believe that over time the users will develop cognitive skills to 
accomplish many of the cognitive processes demonstrated when using 
technology and would be capable of demonstrating these skills without 
requiring the aid of technology any longer.   

The distributed cognition approach is a viable framework to understand the 
relationships and interactions between them. It can ease the cognition burden 
and enable performance. Therefore, distributed cognition perspectives provide 
the reason why the use of graphic calculator will not impede learning of 
mathematics.  

Constructivist Learning Theory  

Constructivist learning theory offers a sharp contrast to the traditional 
instruction which is based on the transmission or absorption view of teaching 
and learning. Typically, the traditional approach would firstly involve a 
teacher’s model through the completion of several examples and then handed 
over to students to attempt to repeat the same procedure demonstrated. From the 
constructivist perspective, learners are actively involved in the construction of 
their own knowledge, rather than in passively receiving knowledge (Bruning, 
Schraw, Norby & Ronning, 2004; Shelly, Cashman, Gunter & Gunter, 2004). In 
the situation where learners are in control of elements in the learning 
environment, learning results are higher (Mayer & Moreno, 2002). For 
mathematic education, this constructivist perspective of learning is extremely 
appealing because having the learner construct his or her own understanding is 
very conducive to build strong problem solving skills. 

For many educators, the increased availability of technology revolutionised the 
arts of teaching mathematics and statistics (Cobb & Moore, 1997). Traditional 
perspective which focused on building mechanical skills could be handled with 
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the availability of technology. Orton (1992) suggested that the calculator can be 
used in an exploratory and investigatory way to help students in constructing 
their own understanding of arithmetic. In addition, graphic calculator usage 
enables students to concentrate on acquiring a deeper conceptual knowledge of 
mathematics. Thus, this study integrates the use of graphic calculator in 
mathematics teaching and learning.  The graphic calculator strategy is designed 
in accordance with this view of constructivist learning theory. With teacher 
guided instructions that foster teacher-students interaction, students will use the 
graphic calculator to explore their own ideas and to be involved in discovering 
and validating the mathematical concepts. Students are no longer passive 
absorbers of information but constructivist participants in learning as they 
acquire new knowledge with the use of the graphic calculator.   

Use of Graphing Calculators 

In Malaysia, calculators were strictly prohibited at both the primary and lower 
secondary levels before the year 2002. However, in 2002, usage of calculator 
was introduced for Form Two and Three students in lower secondary 
mathematics curriculum (Kementerian Pendidikan Malaysia, 2002). Currently, 
the usage of calculators is still prohibited in the primary grades while the usage 
of scientific calculators is prohibited in Form One. The latest reform in the 
Malaysian Secondary School Integrated Mathematics Curriculum calls for the 
need to integrate information technology in teaching and learning of 
mathematics. In response to this call, mathematics teachers and students are 
now encouraged to use scientific and graphing calculators in the upper 
secondary mathematics classroom. Moreover, currently, scientific calculators 
are already allowed to be used at the Malaysian Certificate of Education 
examination level (Kementerian Pendidikan Malaysia, 2002).   

The use of graphing calculators in teaching and learning enable various kinds of 
guided explorations to be undertaken. For example, students can investigate the 
effects of changing parameters of a function on the shape of its graph. They can 
also explore the relationships between gradients of pairs of lines and the lines 
themselves. These activities would have been too difficult to attempt without 
technology. Exploratory activity in mathematics may facilitate an active 
approach to learning as opposed to a passive approach where students just sit 
back passively listening to the teacher. This creates an enthusiastic learning 
environment. This clearly shows the application of constructivist learning 
environment. 

Graphing calculators also offer a method of performing computations and 
algebraic manipulations that is more efficient and precise than paper-and-pencil 
method alone (Waits & Demana, 2000). Examples include finding the solutions 
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of simultaneous equations or determine the equation of a straight line that is 
passing through two points. The mathematical concepts underpinning those 
procedures are rich and important for understanding. However, students often 
seem to put more effort in calculation and correspondingly less to making sense 
of the problems. Both attention to concepts and skill would be desirable in 
mathematics learning. Rather than just the development of mechanical and 
computational skills, graphing calculators also allow for cultivation of 
analytical adeptness and proficiency in complex thought process (Pomerantz, 
1997). Problems representing real-world situation and data with complicated 
numbers can also be addressed. This would offer new opportunities for students 
to encounter mathematical ideas not in the curriculum at present. With 
appropriate use of graphing calculator, students can avoid time-consuming, 
tedious procedures and devote a great deal of time concentrating on 
understanding concepts, developing higher order thinking skills, and learning 
relevant applications. Jones (2000) argued that when students work with 
graphing calculator, they have potential to form an intelligent partnership, as 
graphing calculator can undertake significant cognitive processing on behalf of 
the user. This argument is in line with the distributed cognition and cognitive 
load theories. Distribution of cognition such that the larger part of cognitive 
process is taken over by the use of graphing calculators thus allowing learners 
to focus more on problem solving. From the cognitive load perspective, the 
focus of learning is to acquire problem solving schema rather than to acquire 
automation of mental arithmetic per se that distracts the real aim of problem 
solving. The distracting activities might exhaust learners’ mental resources such 
that these activities will impose extraneous cognitive load and hence will be 
detrimental for learning. Therefore, instructional strategy that integrates the use 
of graphing calculator seems logical to reduce extraneous and increase germane 
cognitive load. This is because, as a result of distribution of cognition, graphing 
calculator offloads part of the cognitive process that reduces extraneous 
cognitive load, and this allows the learners to focus on more processing tool 
relevant for learning. The tool will help free the mental resources to enable 
them to acquire the necessary schemas and automation, or in other words the 
strategy simultaneously increases the germane cognitive load.  

METHOD 

Purpose of the Study 

The purpose of this study is to investigate the effects of using graphing 
calculators in mathematics teaching and learning on performance and meta-
cognitive awareness for Form Four secondary school students when learning 
Straight Lines topic. Thus, two types of instructional strategy that is the 
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graphing calculator strategy and the conventional instruction strategy were 
compared on performance, meta-cognitive awareness, mental load and 
instructional efficiency.   

The research hypotheses were:  

1. There is significant difference in the mean overall test performance in the 
learning of Straight Lines topic between the GC strategy group and the CI 
strategy group.  

2. There is significant difference in the mean conceptual knowledge 
performance during the test phase in the learning of Straight Lines topic 
between the GC strategy group and the CI strategy group. 

3. There is significant difference in the mean procedural knowledge 
performance during the test phase in the learning of Straight Lines topic 
between the GC strategy group and the CI strategy group.  

4. There is significant difference in the mean performance on solving similar 
problems during the test phase in the learning of Straight Lines topic between 
the GC strategy group and the CI strategy group. 

5. There is significant difference in the mean performance on solving transfer 
problems during the test phase in the learning of Straight Lines topic between 
the GC strategy group and the CI strategy group. 

6. There is significant difference in the mean overall level of students’ meta-
cognitive awareness, cognitive strategy subscale, planning subscale and self-
checking subscale while solving problems related to the Straight Lines topic 
between the GC strategy group and the CI strategy group. 

7. There is significant difference in the mean mental effort per problem invested 
during the test phase in the learning of Straight Lines topic between the GC 
strategy group and the CI strategy group.  

8. There is significant difference in the mean instructional efficiency index in 
the learning of Straight Lines topic between the GC strategy group and the CI 
strategy group.  

Methodology of the Study 

This study focused on the effects of integrating the use of graphing calculator 
strategy (GCS) and using conventional instruction strategy (CIS) in the teaching 
and learning of mathematics on Form Four secondary schools students on 
measures of mathematics performance and meta-cognitive awareness. Thus, the 
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experimental design is considered most apt for this purpose. It is important to 
note that only experimental data can conclusively establish cause-and-effect 
relationships (Gay & Airasian, 2003).   

This quasi-experimental design fulfils the criterion of a strong experimental 
design whereby there must be at least two comparison groups: one treatment 
group and one control group. The purpose of having different experimental and 
control groups is to control any confounding extraneous variables that will 
threaten the internal validity of the design. Even though the quasi-experimental 
design does not provide full control, Campbell and Stanley (1963) state that the 
quasi-experimental studies are “well worth employing where more efficient 
probes are unavailable” (p. 205). Further, these designs permit one to reach 
reasonable cause and effect of the intervention provided on the investigated 
variables conclusion (Ary, Jacob & Razavieh, 1996). In addition, another 
advantage of this design is that since classes are selected “as is”, possible effects 
from reactive arrangements are minimised (Gay & Airasian, 2003).    

The quasi-experimental non-equivalent control-group post-test only design 
(Creswell, 2002; Cook & Campbell, 1979) was employed. Figure 1 shows the 
diagrammatic representation of the non-equivalent control-group post-test only 
design. An X indicates an experimental treatment, and a “dash” indicates no 
experimental treatment. The Os indicate the measurements made during the 
post-test. 

Figure 1. Non-equivalent Control-Group Post test Only Design 
Group Treatment Post test Measures 

Experimental X O 

Control -  O 

In this study, well-designed activities integrating the use of the TI-83 Plus 
graphing calculators were prepared as modular lessons. These modular lessons 
were used by the experimental group teacher in helping the students to build 
mathematical understanding. On the other hand the conventional instruction 
strategy was a whole-class instruction. Students were not allowed to use the TI-
83 Plus graphing calculator.   

Variables Studied 

The overall test performance refers to students’ overall achievement based on 
the Straight Lines Achievement Test (SLAT) score which indicated the 
students’ ability to demonstrate their understanding of mathematical concepts in 
Straight Lines topic learnt during the experimental period of time. The 
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mathematical concepts that will be tested in the SLAT include the concept of 
the gradient of a straight line, the concept of the gradient of the straight line in 
Cartesian Coordinates, the concept of intercept, the concept of the equation of a 
straight line, and the concept of parallel lines.   

The conceptual knowledge performance were students’ performance in 
interpreting, explaining, and applying mathematical concepts in Straight Lines 
topic to a variety of situations and translate between verbal statements and 
mathematical expressions. Evidence is communicated through making 
connection between the problem situation, relevant information, appropriate 
mathematical concepts and logical or reasonable responses.   

On the other hand, the procedural knowledge performance is the ability of 
students to solve mathematical problems which requires algorithm-based 
method. Evidence includes the verifying and justifying of a procedure using 
concrete models, or the modifying of procedures to deal with factors inherent in 
the problem.   

Meta-cognitive awareness refers to how often students think or feel or do or 
demonstrate an awareness of their ability to monitor their own thought while 
working on tasks or mathematics problems (Flavell, 1976). Thus, levels of 
students’ awareness were measured on three meta-cognitive subscales namely, 
planning, cognitive strategy and self-checking while solving Straight Lines 
problems. This instrument comprised of 33 items based on the three subscales.  
Examples of items are as follows.  Planning: “I made sure I understood what 
had to be done when I have to determine the gradient of a straight line passing 
two points in Cartesian coordinates”; Cognitive strategy: “I used an appropriate 
formula to determine the gradient of a straight line passing through two points 
in Cartesian coordinates; Self-checking: “I corrected my errors if I used the 
wrong formula in determining the gradient of a straight line passing through 
two points in Cartesian coordinates”. 

Mental effort can be considered to reflect the actual cognitive load which refers 
to the cognitive capacity that is actually allocated to accommodate the demands 
imposed by the task (Paas, Tuovinen, Tabbers & van Gerven, 2003, Sweller et. 
al., 1998; Paas & van Merrienboer, 1994).  According to Pass et al. (2003b), 
mental effort can be considered to reflect the actual cognitive load. In this 
study, mental effort will be measured by a rating scale technique. The nine-
point symmetrical rating-scale, ranging from very, very low mental effort (1) to 
very, very high mental effort (9), designed by Pass and van Merrienboer (1994) 
and Pass (1992) was used in this study. Subjects were asked to report their 
invested mental effort on a nine-point symmetrical category scale by translating 
the perceived amount of mental effort into the numerical value, 1 to 9. The 
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intensity of effort being expended by subjects can be considered the essence of 
a reliable estimate of cognitive load (Paas & van Merrienboer, 1994).   

Instructional efficiency is a diagnostic instrument to identify and differentiate 
the efficiency of instructional conditions. It is measured by the 3-dimensional 
(3-D) instructional efficiency, which combines the measures of learning effort, 
test effort and test performance. The approach used to achieve the desired three 
factors combination was adopted from Tuovinen and Paas (2004), which was an 
extension of the original formulation by Paas and van Merrienboer (1993) 
method. The 3-D Efficiency is calculated using the following formula: 

3-D Efficiency =
3

TL EEP −−
, 

where P = performance, LE = learning  effort, and TE = test effort. 

RESULTS 

The subjects for this experiment were 99 students from four intact classes of 
Form Four in one randomly selected school in the Alor Gajah District in 
Malacca. Two classes were randomly assigned to be the GC strategy groups and 
the other two were assigned to be the CI strategy groups. The GC strategy 
groups comprised of 41 students, 14 boys and 27 girls, while the control groups 
comprised of 58 students, 28 boys and 30 girls.  However, during the post-test a 
few students from both groups had to participate in co-curricular activities and 
also a few of them were absent from school. Hence, a total of 33 students in the 
GC strategy group and 32 students in the CI strategy group took the post-test. 

Performance measures 

The means and standard deviations of the overall test performance for both the 
GC and the CI strategy groups were presented in Table 1 below. The mean 
overall test performance of GC strategy group was 24.21 (SD=9.69) while the 
mean for the CI strategy group was 17.75 (SD=10.54). An independent t-test 
analysis showed that the difference in the means was significant, t(63)=2.57, 
p<.05. The results indicated that there was a significant difference in the mean 
overall test performance in the learning of the Straight Lines topic between the 
GC strategy group and the CI strategy group. The magnitude of the differences 
in means was considered moderate based on Cohen (1988) with eta-squared 
=.09. Further, planned comparison test showed that the mean overall test 
performance of the GC strategy group was significantly higher than those of the 
CI strategy group, F(1,63)=6.60, p<.05. This finding suggested that the GC 
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strategy group had performed significantly better for the test phase than the CI 
strategy group.  

Table 1. Means, standard deviations for overall test performance 
 Group n M SD SEM t df p 

Overall test 
performance 

GC strategy 
 
CI strategy 

33 
 

32 

24.21 
 

17.75 

9.69 
 

10.54 

1.69 
 

1.86 

 
2.57 

 
63 

 
.012 

Table 2 illustrates further analyses. Based on the conceptual knowledge 
performance for both the GC and the CI strategy groups, the GC strategy group 
obtained a mean score of 15.70 (SD=4.81) while that the CI strategy group 
obtained a mean score of 9.59 (SD=6.48). It is to be noted that Levene’s test 
indicated that the assumption for equal variance has been violated, F= 4.51, 
p<.05. Therefore the reading for the output for the independent t-test is based 
on the reading for equal variance not assumed. An independent t-test showed 
the difference in means was significant, t(57.18)=4.30, p<.05. The effect size 
was .23 using eta-squared value which was large based on Cohen (1988). 
Further, planned comparison test showed that the mean conceptual knowledge 
performance of the GC strategy group was significantly higher than those of the 
CI strategy group, F(1,57.18)=18.49, p<.05. This finding suggested that the GC 
strategy group had performed better on the conceptual knowledge performance 
than the CI strategy group.  

The means and standard deviations of procedural knowledge performance for 
both the GC and the CI strategy groups are illustrated in Table 2. The mean 
procedural knowledge performance of the GC strategy group was 8.18 
(SD=5.58) while that of the CI strategy group was 8.16 (SD=4.59). An 
independent t-test showed that the difference in means was not significant, 
t(63)=.02, p>.05. This finding suggested that the GC strategy group performed 
as well as the CI strategy group on the procedural knowledge performance. 

Findings from Table 2 indicated that the mean performance on solving similar 
problems of the GC strategy group was 8.82 (SD=5.46) while that of the CI 
strategy group was 9.66 (SD=5.40). An independent t-test showed the 
difference in the means was not significant, t (63)=−.62, p>.05. The results 
showed that there was no significant difference in the mean performance on 
similar problems during the test phase in the learning of the Straight Lines topic 
between the GC strategy group and the CI strategy group. The effect size was 
.006 using eta-squared value which was considered very small based on Cohen 
(1988).   
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Table 2. Means, standard deviations, independent sample t-test results 
 Group n M SD SEM t df p 

Conceptual 
knowledge 
performance 

GC  
 
CI 

33 
 

32 

15.70 
 

9.59 

4.81 
 

6.48 

.84 
 

1.15 

 
4.30 

 
57.18 

 
.000 

Procedural 
knowledge 
performance 

GC  
 
CI  

33 
 

32 

8.18 
 

8.16 

5.58 
 

4.59 

.97 
 

.81 

 
.02 

 
63 

 
.984 

Similar 
problems 
performance 

GC  
 
CI  

33 
 

32 

8.82 
 

9.66 

5.46 
 

5.40 

.95 
 

.96 

 
−.62 

 
63 

 
.536 

Transfer 
problems 
performance 

GC  
 
CI  

33 
 

32 

15.09 
 

8.41 

5.33 
 

5.87 

.93 
 

1.04 

 
.30 

 
63 

 
.000 

Table above illustrates the mean performance on solving transfer problems of 
the GC strategy group which was 15.09 (SD=5.33) while that of the CI strategy 
group was 8.41 (SD=5.87).  An independent t-test showed that the difference in 
the means was significant, t (63)=4.81, p<.05.  The results showed that there 
was a significant difference in the mean performance on solving transfer 
problems during test phase in the learning of the Straight Lines topic between 
the GC strategy group and the CI strategy group.  An eta-squared obtained was 
.27 where the magnitude of difference between the two means was considered 
large based on Cohen (1988). Further, planned comparison test showed that the 
mean performance on solving transfer problems of the GC strategy group was 
significantly higher than those of the CI strategy group, F (1,63)=23.14, p<.05. 
This finding indicated that the GC strategy group had performed better on 
solving transfer problems during the test phase as compared to the CI strategy 
group.  

Meta-cognitive Awareness Level 

The Meta-cognitive Awareness Survey comprised of three subscales vis-à-vis 
cognitive strategy, planning and self-checking. Each subscale consisted of 11 
items with four point Likert scale and these amounted to 33 items. Based on the 
general rule provided by Nugent, Sieppert and Hudson (2001), mean scores 
ranging from 1.00 to 2.00 indicated a low score, 2.00 to 3.00 indicated a 
moderate score, whilst means scores ranging from 3.00 to 4.00 indicated a high 
score.   

The mean of each item for the GC strategy group ranged from 2.06 (SD=.79) to 
3.12 (SD=.70) while the CI strategy group ranged from 2.00 (SD=.80) to 2.97 
(SD=.90). This showed that both group scored above moderate level of meta-
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cognitive awareness. The total score of each subscale for the GC strategy group 
ranged from 2.59 (SD=.41) to 2.66 (SD=.44) whereas the CI strategy group 
ranged from 2.34 (SD=.40) to 2.54 (SD=2.54). The GC strategy group obtained 
the highest mean score for the cognitive strategy subscale whilst the CI strategy 
group scored highest for the planning subscale. This indicates that the two 
groups differ in their meta-cognitive awareness. 

As shown in Table 3, the overall mean level of students’ meta-cognitive 
awareness of the GC strategy group was 2.63 (SD=.40) while the CI strategy 
group was 2.44 (SD=.37). An independent t-test revealed that the difference in 
means was significant, t(63)=2.05, p<.05. Results showed that there was a 
significant difference in the mean level of students’ meta-cognitive awareness 
between the GC strategy group and the CI strategy group. The effect size for the 
treatment was .06 using eta-squared value which was considered moderate 
based on Cohen (1988). Further, planned comparison test showed that the mean 
level of students’ meta-cognitive awareness of the GC strategy group was 
significantly higher than those of the CI strategy group, F (1,63)=4.22, p<.05. 
This finding indicated that the GC strategy group had better level of meta-
cognitive awareness while solving problem related to the Straight Lines topic as 
compared to that of CI strategy group.   

Table 3. Means, standard deviations of students’ meta-cognitive awareness 
 Group n M SD SEM t df p 

Overall meta-
cognitive 
awareness  

GC strategy 
 
CI strategy 

33 
 

32 

2.63 
 

2.44 

.40 
 

.37 

.07 
 

.07 

 
2.05 

 
63 

 
.044 

Table 4 showed that the mean score for cognitive strategy subscale for the GC 
strategy group which ranged from 2.24 (SD=.83) to 3.12 (SD=.70) while that of 
the CI strategy group ranged from 2.00 (SD=.80) to 2.97 (SD=.90). The mean 
level of students’ meta-cognitive awareness for cognitive strategy subscale of 
the GC strategy group was 2.66 (SD=.44) while that of the CI strategy group 
was 2.43 (SD=.45). An independent t-test further showed the difference in the 
means was significant, t (63)=2.10, p<.05. The effect size for the treatment was 
.07 using eta-squared value which was moderate based on Cohen (1988).  
Further, planned comparison test showed that the mean level of students’ meta-
cognitive awareness for cognitive strategy subscale for GC strategy group was 
significantly higher than those of the CI strategy group (F (1,63)=4.40, p<.05). 
These findings indicated that the use of graphing calculator induced higher level 
of meta-cognitive awareness for cognitive strategy subscale while solving 
problems related to the Straight Lines topic than that of the conventional 
instruction.   
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Table 4. Comparison of three meta-cognitive subscales 
 Group n M SD SEM t df p 

Cognitive 
strategy 
subscale  

GC 
 

CI 

33 
 

32 

2.66 
 

2.43 

.44 
 

.45 

.08 
 

.08 

 
2.10 

 
63 

 
.040 

Planning 
subscale  

GC 
 

CI 

33 
 

32 

2.65 
 

2.54 

.44 
 

.37 

.08 
 

.07 

 
1.12 

 
63 

 
.269 

Self-
checking 
subscale  

GC 
 

CI 

33 
 

32 

2.59 
 

2.34 

.41 
 

.40 

.07 
 

.07 

 
2.47 

 
63 

 
.016 

Both groups scored above moderate meta-cognitive awareness level of planning 
subscale. The mean level of students’ meta-cognitive awareness for planning 
subscale of the GC strategy group was 2.65 (SD=.44) while the CI strategy 
group was 2.54 (SD=.37). From the analysis of an independent t-test, it was 
found that the difference in the means was not significant, t (63)=1.12, p>.05.  
Results showed that there was no significant difference in the mean level of 
students’ meta-cognitive awareness for planning subscale between the GC 
strategy group and the CI strategy group. The effect size for the treatment was 
.02 using eta-squared value which was small based on Cohen (1988). This 
indicated that only 2% of the variance of planning subscale was accounted for 
by the strategy imposed on the group.   

The mean level of students’ meta-cognitive awareness for self-checking 
subscale of the GC strategy group was 2.85 (SD=.80) while the CI strategy 
group was 2.16 (SD=.63). Further, analysis of the independent t-test revealed 
that the difference in the means was significant, t (63) =2.47, p<.05. Findings 
suggested that the mean level of students’ meta-cognitive awareness for self-
checking subscale differ significantly between the students of the GC group and 
the CI group. However, an eta-squared obtained was .09 which was considered 
moderate based on Cohen (1988). Further, planned comparison test showed that 
the mean level of students’ meta-cognitive awareness for self-checking subscale 
for GC strategy group was significantly higher than those of the CI strategy 
group, F (1,63) = 1.25, p<.05. Thus, using graphing calculators induced better 
level of meta-cognitive awareness for self-checking subscale while solving 
problems related to the Straight Lines topic than that of conventional teaching.  
About 69.70% of the students in the GC strategy group indicated that they often 
corrected their errors when writing the equation of the straight line.   

Mental effort and instructional efficiency 
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As shown in Table 5 the mean mental effort per problem invested during 
learning phase of GC strategy group was 2.93 (SD=.78) while mean mental 
effort per problem during invested learning phase of CI strategy group was 4.13 
(SD=.91).  An independent t-test showed that the difference in means was 
significant, t(63)=−5.72, p<.05. The results showed that there was a significant 
difference in the mean mental effort per problem invested during the learning 
phase between the GC strategy group and the CI strategy group.  The effect size 
of the GC strategy group as compared to the CI strategy group was .34 using 
eta-squared value which was large based on Cohen (1988). Planned comparison 
test showed that the mean mental effort per problem invested during learning 
phase for CI strategy group was significantly higher than those of the GC 
strategy group, F(1,63)=32.72, p<.05. This finding indicated that the GC 
strategy group had expanded less mental effort per problem than that of the CI 
strategy group during learning phase. 

Table 5. Comparison of mental effort and instructional efficiency 
 Group n M SD SEM t df p 

Mental 
effort  

GC 
 

CI 

33 
 

32 

2.93 
 

4.13 

.78 
 

.91 

.14 
 

.16 

 
−5.72 

 
63 

 
.000 

3-D 
instructional 
efficiency 

GC 
 

CI 

33 
 

32 

.70 
 

.73 

1.31 
 

1.28 

.23 
 

.23 

 
4.46 

 
63 

 
.000 

Instructional efficiency measures were calculated using Tuovinen and Paas 
(2004) procedure of 3-Dimensional instructional efficiency index. It is an 
extension of the original Paas and van Merrienboer (1993), 2-dimensional 
instructional efficiency. According to Tuovinen and Paas (2004), the 3-D 
instructional condition efficiency takes into account the three dimensions: 
learning effort, test effort and test performance.  

The means and standard deviations of the instructional condition efficiency 
index for both the GC and the CI strategy groups were shown in Table 5. The 
mean instructional efficiency index of GC strategy group was .70 (SD=1.31) 
while mean instructional efficiency index of the CI strategy group was −.73 
(SD=1.28). Analysis of an independent t-test showed that the difference in 
mean was significant, t (63)=4.46, p<.05. The effect size was .34 using eta-
squared value which was large based on Cohen (1988). Planned comparison test 
showed that the mean 3-D instructional efficiency index for the GC strategy 
group was significantly higher than those of the CI strategy group, F 
(1,63)=19.89, p<.05. These findings confirmed that learning by integrating the 
use of graphing calculators was more efficient than learning using CI strategy. 
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CONCLUSION AND DISCUSSION 

In summary, the results showed that there were significant differences in the 
mean for almost all important performance variables such as the overall test 
performance, the conceptual knowledge performance, the number of transfer 
problems solved and performance on transfer problems. Further, it was found 
that the means for the GC strategy group was significantly higher that that of 
the CI strategy group. This confirmed that the integration of the use of the 
graphing calculator leads to better performance in the learning of the Straight 
Lines topic as compared to the conventional instruction.  

It was also found that the GC strategy group obtained better level of meta-
cognitive awareness than the CI strategy group. This suggested that the 
instruction using the graphing calculators induced better meta-cognitive 
awareness as compared to conventional instruction.   

The results also revealed that the GC strategy group had invested less mental 
effort per problem during the learning and the test phases. This suggested that 
the instruction using graphing calculators imposed less mental effort during the 
learning and the test phases as compared to conventional instruction. In 
addition, the findings also indicated that learning by integrating the use of 
graphing calculators was instructionally more efficient than learning using 
conventional strategy. 

The findings from this study confirmed other earlier findings about the positive 
effects of graphing calculators’ usage in mathematics classroom (Horton et al., 
2004; Connors & Snook, 2001; Graham & Thomas, 2000). This study has also 
provided empirical evidence and confirmed earlier studies about the advantages 
of using graphing calculators as facilitative tool for improving level of students’ 
meta-cognitive awareness (Gage, 2002; Hylton-Lindsay, 1998).   

The GC strategy group imposed lower cognitive load and resulted in less effort- 
demanding transfer performance than that of the CI strategy group.  
Furthermore, the new 3-D instructional efficiency approach of Tuovinen and 
Paas (2004) was used as diagnostic instrument to identify different aspect of 
efficient or inefficient instructional conditions based on assessments of mental 
effort during instructions, mental effort during test phase, and test performance.  
The 3-D method appears to provide a more robust way of investigating and 
expressing the reasons behind a given instructional condition’s total efficiency 
and may suggest more beneficial ways to improve instruction than previous 
measures used (Tuovinen & Paas , 2004). 
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